Minimal Distortion Principle for Blind Source Separation
نویسندگان
چکیده
Blind source separation (BSS) is a method for recovering a set of source signals from the observation of their mixtures without any prior knowledge about the mixing process. In BSS the definition of a source signal has an inherent indeterminacy; any linear transform of a source signal can also be considered a source signal. Due to this indeterminacy, there are an infinite number of valid separators that can extract the source signals. This paper proposes a principle for choosing an optimal separator among them in a certain sense. The optimal choice is made such that the observed signals are the least subjected to distortion by the separator. The proposed normalization has some favorable features, particularly for BSS of convolutive mixture.
منابع مشابه
Blind Source Separation Using Penalized Mutual Information Criterion and Minimal Distortion Principle
One of the most important problems in Blind Source Separation of convolutive mixtures is the filtering ambiguity. One way to address this is to modify the separation algorithm to enforce some constraint. In this paper, according to our previous studies recently introduced in [El Rhabi et al., A penalized mutual information criterion for blind separation of convolutive mixtures, Signal Processin...
متن کاملA Robust Algorithm for Blind Separation of Convolutive Mixture of Sources
Conventional algorithms for blind source separation do not necessarily work well for real-world data. One of the reasons is that, in actual applications, the mixing matrix is often almost singular at some part of frequency range and it can cause a certain computational instability. This paper proposes a new algorithm to overcome this singularity problem. The algorithm is based on the minimal di...
متن کاملConvolutive blind source separation by efficient blind deconvolution and minimal filter distortion
onvolutive blind source separation (BSS) usually encounters two difficulties – the filter indeterminacy in the recovered sources and the relatively high computational load. In this paper we propose an efficient method to convolutive BSS, by dealing with these two issues. It consists of two stages, namely, multichannel blind deconvolution (MBD) and learning the postfilters with the minimum filte...
متن کاملBlind Separation of Jointly Stationary Correlated Sources
The separation of unobserved sources from mixed observed data is a fundamental signal processing problem. Most of the proposed techniques for solving this problem rely on independence or at least uncorrelation assumption for source signals. This paper introduces a technique for cases that source signals are correlated with each other. The method uses Wold decomposition principle for extracting ...
متن کاملA Distortion-Free Learning Algorithm for Feedforward Multi-Channel Blind Source Separation
FeedForward (FF-) Blind Source Separation (BSS) systems have some degree of freedom in the solution space. Therefore, signal distortion is likely to occur. First, a criterion for the signal distortion is discussed. Properties of conventional methods proposed to suppress the signal distortion are analyzed. Next, a general condition for complete separation and distortion-free is derived for multi...
متن کامل